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Abstract

In this note we will give an expression of masses of the elementary particles of the standard model in terms of the
golden mean. This is the value ¢ = (v/5 — 1)/2, which corresponds to the Hausdorff dimension of a single random
Cantor set. El Naschies transfinite field theory which we will call the golden field theory is based on this fact and is the
basis of the present paper.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In [1,2], the masses of quarks were expressed in terms of ¢, of the coupling constants o; and of other fundamental
particle’s mass. In the present work we will give expressions for masses of elementary particles in terms of ¢ and 1/¢,
where ¢ = (v/5 — 1)/2 is the golden mean.

The Hausdorff dimension of the zero set d¥ is equal to the golden mean value ¢, if the expectation value of the
dimension n and the expectation value of the Hausdorff dimension in the Cantorian space &> are equal. This is the
condition of space filling:

_14+dY 1

~ (n) = (d.), where ~ (n) = PPN (d.) = m

Ifd® = ¢ = (v/5—1)/2, then

where d™ is the Hausdorff dimension of n-dimensional sets S” of &>, as shown in [3,4].
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Table 1
Mass of subatomic particles, resonance and Gauge bosons following [1,2]
Particle Theoretical mass in terms of ¢ and 1/¢ Theoretical mass in terms of The nearest value of the Experimental
= (20)(1/¢)* experimental value in powers  value
= (20)(7 — ¢*) = 137.082 of ¢ and 1/¢
o ()ao 7= ()¢ = 0. (20)(1/¢)*+
e (Electron) \/10? _ /10 _ <@> (é) :@(1 +¢) =0.51166 MeV Voo (10>¢ 0.51166 MeV W —0.511414529 MeV  0.511 MeV
or better 2 +25 0.511099
: _ (eo®)) ; 0
n (Neutron % _ —_ %) = L 2 8
A ( ) i (20)( ) = (20)(47 — ¢°) = 939.574249 MeV = 939.574249 MeV (20)@) — (20)(47 — ¢ 939.563 MeV

P (Proton)

n+ (m meson)

(m)

K* (Kaon)

KO

Gt _ (o)~ (1) -1)(

29) _ @no-¢)-s’0-¢)

20 20
=938.45 MeV, where ky

G+3=ad+ () =28+9¢") =3
=3 (g) (8 + ¢*) = 139.5820393 MeV

O(()——f

27— ¢HB - 9" =
= 134.5820392 MeV

1 (M 4+ mp) =7 = (20) <#)4 =

= 137.0820 MeV

(DimEg ® Eg) —
=43y — (52 + 2k +2)
= 07— ¢*)(4- 9" -

(DimEg © Ey) + 2 = (496 — k) +2 = (20)(7 — ¢4)(4 e %)

2 = (496 —
= 45y — By — 2L

£) —ene) (-o-)

=493.967 MeV, where k = ¢*(1

~$1-9)

(7-9")(8 + 4"
HONCEY
(20)(7 - ')
(24°)) -2

k) —2 = (496 —

') = 2"

= 0)(3)"(3+ 6 +4) = 497.967 Mev

- (4 ¢ -

Gk — 938.45 MeV

28+ ¢*) = 139.5820393 MeV

L (8 — ¢*) = 134.5820393 MeV

& = 137.082 MeV
o(4-02-1%)

= 939.574249 MeV

~ (580) (i) = (580)(1 + ¢)
—938.459 MeV

3
~(33)(}) = (33)4+¢)
= 139.79 MeV
~(12)(3) = 1201+

= 133.0820 MeV

0)(3)" = 20)(7 - ¢*)
= 137.0820 MeV

~m)() =

(72)(7 - ")

=1 (3 ¢ -5) =493.967 Mey  — 4934953 MeV

w497 +4) =%
=497.967 MeV

(3+0+%)

~ (190)(2)" = (190)3 - )
— 497.42645 MeV

938.27231 MeV

139.57 MeV

134.98 MeV

137.275 MeV

493.646 MeV

497.671 MeV
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A(1232)

Exi~

Exi’

T (tau)

Z+

LKE+K°) = (mg) = (496 — &) = (496 — (2¢°)%)
=45, — (52 + 2k) = 48y — G = Fo(4 — ¢?)
=(20)(7 7446“)(4 —¢%) = (20)(7 - ¢")3 + ¢)

= (20) (%) (1 - ﬁ) = 495.967 MeV

102 + (49)()] = 10[20(7 — ¢*) + 49¢)]

- 10{(20)(#)4 +@)((2) - 1)}

= 1673.657047 MeV
10[a — (8)(¢)] = 10[20(7 — ¢*) — 8¢]
=40[(5)(7 — ¢*) — 2¢] = 1321.377 MeV

10[@ — (9)(¢)] = 10[20(7 — ¢*) — 9¢]
- 10{(20)(& - (9)(5— 1)} = 1315.19733 MeV

(10(m)] — [15] = 10(10) (é)“ _ o)
= 99(#)6 =99(18 — ¢°) = 1776.482919 MeV

- 1\22 4
el _ GG E _ g0 (i) — 80(7 — ¢%)

20 20

= 548.3281574 MeV

(] - (14 97" = [CGRE] 3y
1 3 | 8 ! 3 | 3 . 8

=66 - )] = ) o)

= (4+¢")[6(47 - ¢")]

= 118979 MeV. where 7, = (10)(3) - (1)’

% (4= ¢7) =% (3 +¢) = 495967 MeV (117 @3

= (D@ +¢)
=495.619 MeV

(3 —14°)(9) = 1233.48 MeV ~ (180) G)“

— (180)(7 — ¢*)
= 1233.48 MeV

10[& + (49)(¢)] = 1673.657 MeV

224)(1)*
~ (@ +V/5)/2 = 1673.3128 MeV

(
(224)(7 ~ %)
1672.4088 MeV

([

10[@ — (8)(¢)] = 1321.377 MeV ~ (817) @ = (817)(1+ ¢)

= 1321.9337 MeV

~ (28) (%)8
= (28)(47 - ¢")
= 1315.403 MeV

105 — (9)(¢)] = 1315.19733 MeV

%(2) (L)Z — 1776.482919 MeV 99(;)6 — 99(18 — ¢°)

20/ \¢
~ (137)(13) = 1781 MeV = 1776.482919 MeV

_ 4
47, = 548.328157 MeV (80) (#) —80(7 — ¢

= 548.3281574 MeV

~ (735) (;) = (735)(1 + ¢)
= 1189.2549 MeV

@3-
~(@)(@()3-1)

= 1189.79 MeV

495.67 MeV

12301234 MeV

1672.43 MeV

1321.32 MeV

1314.9 MeV

1777 MeV
(Donald Parkins)

548.8 MeV

1189.37 MeV

(continued on next page)
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Table 1 (continued)

Particle Theoretical mass in terms of ¢ and 1/¢ Theoretical mass in terms of The nearest value of the experi- Experimental
= (20)(1/¢)" = (20) x mental value in powers of ¢ and  value
(7—¢*) =137.082 1/¢
0 (i ()] | 2 5 [ao@ @) 200 3 2, ~ 1 1197.43 MeV
s [inl] 30+ gy = [0 20 2 0) @EE0-0) = 40)(3})
’ § “u = (740)(1 + ¢)
= (1) {(6) (1) + g} ((%) (;) E g) = 1196.854 MeV
= 1197.34515 MeV
= ((4+¢")[(6)47 - ¢%) +2]) = 1196.854
- _ 3 8 22 ~ 1) _ 1192.55 MeV
z {acqégn] 114 ¢) = (é) {(6) (é) ,%} i((l‘%) (5) %—g =1192.618 MeV = (737) Q) = (737)
~ (= _ 1+ ¢) = 1192.49 MeV
(4 ) [(6)4T— ) —1]) = 1192618 MeV = (@ - (4+9)©9) = 119217 Mev (1 9)
<Z> Tew (mn) | __ 1 1 _ Iy - 3 11
{ < ] - (6)((/)) =6(199 + ¢') = 1194.030149 MeV 2 () (#) 1194030149 MeV - (6)(@ — 6(199 1+ ") 1193.28 MeV
~ (5 — 4.5)(9) = 1192.38 MeV = 1194.030149 MeV
5 2 3
wmewon) m, —fa107 (2) = 10y (2)’ /102 v Je()s) ~(9)(1) 105.65839 Mev
=10(3 — ¢*)/10(1 = 105.3098759 MeV - 2 =(25)(4+¢)
GoeviviEd ¢ = Vi /() (5) @+ oy — 105.6838 MeV
=105.309875 MeV e
5 2
(10)3(L 3 3 = 3 ~ 1 206.768262 MeV
s {7(): (10 () = 107,/ (3) (10)V\/ (2 + )b ~(19)(3)
R =205.8171028 MeV =(79)(3 - ¢*)
= (10)°y/(4+¢7) = 2058171028 MeV where /5 = (2 + ¢°) = 206.82468 MeV
) 4 47y () = 80 GeV ~ ! 80.4 GeV
w (@) (1 —sin 0,)°(10) = (20)(3) (1 = ¢* (107 ) ~ (404) (1)
4 4 = (404)(199 +¢')
= (10°20) (L) (4)(d)* = 80(2) = 80(7 — ¢*)(*
(10)°20) () (4)(9)* = 80(2) =80(7 - ¢*)(¢") 40,398 GV
=80 GeV, where sin” 0, = ¢° and (1 — ¢°) = (2)(¢)’
_ 3
z R (%) (é) (2V2)3($)’ = 91.5298244 GeV (40)(v2) @ 91.188 GeV
Vi-¢? 2
. — (40)(W2)(1 + ¢)
= (40v2)(1 + ¢) = 91.5298244 GeV
=91.5298244 GeV
/ ’ Ty = 959.5742755 MeV 957.5 MeV

(140)(5)4

() @) = [ 5= |92 -
= (140)(7 — ¢*) = 959.5742755 MeV

3
~ (226)(})
= (226)(4 + ¢*) = 957.351 MeV
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J/qjis

p (770)

 (783)

Mo

(my)v/5 = 20(2) = (10) (i)ﬂf— 20)(2)

=00 () ((2)v5-2) =) () )

= (10)(1 + $)(4 — ¢*) = 9459.775272 MeV

(me)(®) = (2+3)8) = 8() (1) 8 + ")

= (20) $)4(8 + %) =20(7 - ¢*)(8 + ¢*) = 1116.6 MeV

(M) (22 + k) = (&+%)(22+2¢5)
:2(3)($)4(8+¢4) (114 ¢%) = S(i)4(8+¢4)(i)5

9
- 5(#) (8 + ¢*) = 3095.9318842 MeV

(mz)(5+ ) =% (5 + ) )
=207 - ¢*)(5+¢) =20(}) - (4+1)
— 7701315561 Mev

(me)(5+ ) = (@ +3)(5+ ¢)
=3(71-¢" )8 +¢")(5+¢)
=3(8) 499G+ 9)

= 784.131 MeV

(496 —2)(6) = 630(4 — ) = 6 (20)(1) (4~ )
= (120)(7 — ¢*)(4 — ¢*) = 2974.917961 MeV

o=

) (2 - 30) = 9459.775272 MeV
~ (3)(69) = 9458.66 MeV

(8 + ¢*) = 1116.6 MeV

LB+ ¢ (11+¢7)
= 3095.931942 MeV

@ (5 + ¢) = 770.1315561 MeV

B8+ ¢*)(5+ p) = 784.131 MeV
~ (G— (6 + ¢))(6) = 782.7840 MeV

6%0(4 — ¢7) = 63 + ¢)
= 2977917961 MeV

~ (%— 1/¢)(22)

= 2988.208117 MeV

~ (853) (#)5
= (853)(11 + ¢°)
= 9459.149 MeV

~ (426)(2)’
= (428)(3 - ¢%)
— 1115.2824 MeV

7
~ (107) (;)
= (107)(29 + ¢")
= 3095.942897 MeV

~ (94) (1)’
=(294)3 — ¢)
— 769.7019928 MeV

~ (114) (5)4
= (114)(7 - ¢%)
= 7813676244 MeV

2
~ (1138) (é)
= (1138)(3 — ¢*)
=2979.322679 MeV

9460.3 Mev

1115.63 MeV

3096.9 MeV

770 MeV

782.0 MeV

2979.6 MeV
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For our expressions we need the relation between ¢" and 1/¢". The powers of ¢ are known. These are

V51 Vs (D)1 a5+ (=Dh

¢ 2 2 2
o33 _(V5+3 (D@t a) V5t (b £ b)
2 2 2
¢AZAG—4:h@+04%4
2 2
= 3547 (=1)-3V5+7
2 2
—1)"a,/5+ (—1)"b
¢n:( ) an\g+( )n’ n>2. ne N
The members a; =1, an =1, a3=2, a4 =3,..., a, = a,_» + a,_; form the Fibonacci series. The members b; =1,
b, =3, by =4,..., form another series b, = b,_, + b,_1.

The relation between ¢" and 1/¢" is easily written.
We write the expression for 1/¢,1/¢%,...,1/¢", as following

so1+

#:3—#:3+PU#

#:4+¢3

$=7f¢4:7+(71)¢4

#:114—(#5

%= (boz +byy) + (=1)""'¢", n>2,neN

With this generalization it is possible to express the theoretical masses of particles in terms of ¢ and 1/¢ and the nearest
value to the experimental value may be found in powers of ¢ and 1/¢.

2. Numerical results
The results of our calculations of the mass spectrum of the standard model are in Table 1 which includes 39 particles.
3. Conclusion

Theoretical masses of the elementary particles of the standard model are expressed in terms of ¢ and 1/¢ in the most
simple form. The experimental values of masses of the particles are also expressed in powers of ¢ and 1/¢, which gives
the nearest value to the experimentally known value. Both values were found to be in more than excellent agreement.

A final note is regarding the appearance of the units (M.e.V.) in what is a pure dimensionless number such as
& =2 137. For instance m - = dy + (g) =139.57 MeV and my = % MeV. This can be explained easily in several dif-
ferent ways. First one can give a mechanical model such as that of Sidharth [5] where the = meson are considered to be
made of an electron and a positron rotating around the centre of the mass. That way Sidharth found (see page 49 of
Ref. [5]) that
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In the case of & theory we can see every particle as a scaling of another particle. Let us start from the electron—
positron mass like Sidharth and scale the mass of that of #* meson, so that

mp+ = (Ant)(met)
In this case we have
me: = 0.511 MeV
and
Ane = (289 — 1) = 273.16
where
N
% = (20) (5) = 137.082
Consequently
me = (200 — 1)(me+) = 139.57 MeV
which is almost exactly what is found experimentally.
For the neutral pion 7°, we have something similar, namely
My = (/lno)(me)
where this time A, is given by
Ao = (289 — 10)
so that
my = (269 — 10)(m,) = 134.98 MeV

Again this is exactly as the value found experimentally.

One should note that the scaling “exponents” are made up entirely from a combinatoric of the permissible di-
mensions of & theory according to the dimensional function of the fusion algebra with the fundamental elements 1
and ¢.

Next we consider the neutron as a scaled expectation meson. That is to say as a scaling of the totally unstable
hypothetical meson {m,) = 137.082...MeV, form which the n* and n° mesons are created and for which the mass is
estimated to be

(my) 2 \/ (mge ) (my)(MeV)* 2 137 = &, MeV

That way one finds
my = (Ay)((mz))
with

= (@)

to be
o
my = | = | ({my)) =2 939.58 MeV
20
This agrees completely with the experimentally found mass. However, since numerically both (m,) and (1y)(20) are
given by
(mz) = (An)(20) = ay.
One can simply write
(%)”

my = 20 MeV
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which explains the fusion of the MeV units with the pure number of for instance the inverse of the fine structure constant
of Sommerfield o.
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